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Abstract

Green hydrogen generation using intermittent renewable sources through
electrolysis faces challenges related to efficiency and reliability, largely due to
material limitations and the fluctuating nature of energy inputs. These fluctua-
tions disrupt continuous hydrogen production and increase the degradation rate
of various components of the electrolyser, leading to power losses and diminished
performance. To address this, a bond graph model-based power loss tracking
approach is proposed to study the impact of degradation on Proton Exchange
Membrane (PEM) electrolyser performance. This approach enables real-time
tracking of power losses at different subcomponent and physical phenomenon
levels by accurately representing the system’s reaction kinetics and complex,
nonlinear, multi-physical dynamics. Implemented in the 20-Sim software, the
model benefits from automatic generation of governing analytical equations, en-
hancing usability and insight. A sensitivity study of the model has also been
performed to analyse the responsiveness of the power loss trackers to the change
in parameters. The model can serve as a valuable tool during the design phase,
allowing engineers to analyse and estimate power losses under various operating
conditions. A simulation-based validation was conducted within a green hydro-
gen production multisource platform, confirming the model’s capabilities. Due
to its causal and structural properties, the developed approach has the potential
to support diagnostics and prognostics of a PEM electrolyser.
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1. Introduction

Proton Exchange Membrane (PEM) electrolysers are playing a crucial role in
the transition toward a cleaner and more sustainable energy system. Its advan-
tages over alkaline electrolysis, such as rapid response to the change in operating
conditions, ability to operate at higher pressure, higher purity of the hydrogen,
and compact size, make it the best choice for surplus renewable energy stor-
age, such as solar energy and wind energy, as an alternative to the batteries
in the form of green hydrogen during off-peak hours [1]. This coupling of the
PEM electrolysers with intermittent energy sources interests the researchers for
numerous reasons. PEM electrolysers are highly responsive to fluctuations in
electricity supply, and their fast startup times and ability to quickly ramp up or
down in response to changes in input power make them ideal for use with inter-
mittent renewable energy sources to have efficient operation. PEM electrolysers
help unlock the full potential of clean energy and contribute to a decarbonised
future. PEM electrolysis paired with renewable energy sources helps accelerate
the transition by providing a viable way to store and use renewable energy at
scale. However, despite these advantages of the PEM electrolyser, ensuring the
reliability of the system and efficient operation of the electrolyser when operated
with intermittent renewable energy sources is still a challenge.

The intermittency of renewable energy sources results in poor performance
and lower efficiency of the electrolyser due to water and gas transport issues
emerging from variations in the flow of hydrogen and the accumulation of gases
at the reaction site. The intermittency of the energy sources can also accel-
erate the degradation of the electrolyser by inducing mechanical and thermal
stresses in the electrolyser cell/ stack [2]. This further reduces the performance
and useful life of the electrolyser. Also, the complexity in the operation of the
electrolysis due to the involvement of the different physical phenomena that are
also tangled with each other makes the prediction of the performance of the
electrolyser very difficult. The performance of the electrolyser design is tradi-
tionally analysed by testing the electrolyser under a controlled environment at
different operating conditions [3]. However, the operating conditions during the
actual commissioning of the electrolyser system may differ from those used for
its performance assessment, and this might lead to an underperforming system.
Also, it is important to mention that this method of performance analysis is
quite expensive and time-consuming. The electrolyser cell/ stack is a complex
component, and slight variations during its manufacturing can also lead to sig-
nificant performance differences. For example, the tightening of the bolts that
hold the electrolysis stack together has a significant impact on the mechanical
stresses on the membrane, which can affect the overall performance of the stack
by accelerating the degradation. Thus, this method of performance analysis can
only give a general idea of the electrolyser. The solution to this problem is to
use the simulation environment to analyse the performance of the electrolyser,
which can reduce the overall design and testing cost significantly.

Efficiency tracking plays a major role in reaping the maximum benefits from
coupling PEM electrolysers with intermittent energy sources. It helps to im-
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prove the durability of the PEM stack by estimating power losses caused by
degradation, which are not captured by measurement instruments. This infor-
mation not only acts as the performance indicator for the system but also can
be used to analyse the evolution of the power losses over time, which directly
reflects the degradation speed of PEM stack components such as the membrane
and electrodes. This aids in making better design decisions for choosing the
best materials used to manufacture PEM electrolyser stacks. Power loss esti-
mates can also serve as indicators for fault detection and isolation within the
PEM stack, especially if these losses are due to degradation. Estimating power
losses allows for operating the PEM stack in a degradation-tolerant manner
by adopting a suitable operating point by controlling the actuators, including
pumps and converters that supply water and electricity to the PEM stack, which
can be continuously adapted to compensate for power loss due to degradation.
The Bond Graph models are well-suited for efficiency tracking or power loss
estimation, as the models are based on the power/ energy exchange between
the elements representing the physical phenomena and components. Different
subcomponents can also be modelled as submodels in a modular fashion, also
known as capsules among Bond Graph users, thus portraying the power inter-
action between different subcomponents [4]. This makes the monitoring of the
power exchange within the electrolyser among various subcomponents feasible,
ultimately allowing the tracking of the power losses at different phenomena or
subcomponent levels, provided that the Bond Graph model is accurate enough
to truly represent the actual PEM electrolyser system. This, of course, requires
the researchers to model all the key phenomena and to identify the model pa-
rameters with reasonable accuracy, which is almost practically impossible. This
problem, however, can be tackled by combining the Bond Graph models with
Linear Fractional Transformation (LFT) to include the effect of measurement
and parameter uncertainties.

Over the years, researchers have proposed various Bond Graph models for
PEM electrolysers for performance simulation, control diagnosis, and prognosis.
The model developed by Olivier et al. [5], for an industrial PEM electrolyser,
has taken into account the stack as well as the Balance of Plant (BoP) for the
simulation of the dynamic behaviour of PEM electrolyser for the estimation of
the power consumption and prediction of stack temperature. However, due to
the high complexity of the model, it cannot be easily scaled or adapted for other
types of electrolysers. Also, the model was not exploited for diagnosis and prog-
nosis, but only for analysis. Another Bond Graph model was developed by Sood
et al. [6] for the performance simulation of the PEM electrolyser running on re-
newable energy sources and was implemented on the laboratory-sized single-cell
PEM electrolyser. The developed model was also utilised for diagnosis using
LFT Bond Graph [7, 8]. Another work showcases how the Bond Graph model
of a single cell PEM electrolyser can be exploited for estimating the remain-
ing useful life of a PEM electrolysis cell [9]. In another work, researchers have
proposed the Bond Graph model for the hybrid power system that includes the
PEM water electrolysis to generate hydrogen from solar energy and proposed
the control strategy based on power flow management. Correa et al. [10] pro-
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posed a lumped parameter Bond Graph model for a PEM electrolysis stack of
5.6 kW to analyse the effect of the temperature on the activation overpotential
of the cathode side and the performance of high-pressure PEM electrolysers.

Other modelling techniques have been utilised to model PEM electrolysers
and are mostly utilised to develop a digital twin for a PEM electrolyser stack. In
[11], a simple analytical model is used to create a numerical replica of the PEM
stack that interacts with system measurements. The objective of this model is
to monitor the system and to detect and isolate faults. In [12], the PEM stack is
modelled using a physics-informed neural network technique, which is applied to
monitor the stack’s performance and to estimate the inlet temperature. In [13],
a digital twin is developed based on an analytical model that incorporates phys-
ical knowledge of electrochemical and thermodynamic phenomena. This digital
twin is used to estimate the temperature of the stack cells, supporting effective
thermal management of the electrolyser. In [14], the digital twin integrates a
backpropagation neural network model for electrochemical performance analy-
sis, along with a lumped thermal capacitance model for thermal performance
assessment. This approach enables real-time monitoring and selection of opti-
mal control variables for improved operation. However, these digital twins have
primarily been applied for monitoring and control of the PEM electrolyser stack
and have not yet addressed the estimation of degradation impact manifested as
power losses.

These research works have proven the capability of the modelling approach
in handling the complexity of the PEM electrolyser for various applications.
However, none of them have exploited these models for online efficiency,/ power
loss tracking. Therefore, in this article, an innovative approach for exploiting the
multiphysics dynamical model of PEM electrolysis cell based on coupled Bond
Graph theory for real-time efficiency/ power loss tracking has been proposed.
The proposed model can capture the key dynamics and the reaction kinetics of
the PEM electrolysis cell, such as electrothermal, electrochemical, and thermo-
fluidic phenomena and incorporate the proposed power loss trackers, which are
the part of the proposed model, for estimating the power loss initiated by the
degradations and faults. It is important to mention that in most of the previous
works cited, the developed models have finally been implemented in MATLAB
Simulink by converting the Bond Graph model into a Block Diagram Represen-
tation. This, however, causes the loss of one of the important characteristics of
the Bond Graph models, i.e., to automatically generate the system equations
directly from the Bond Graph model. This means that the models presented
in the cited work can not be easily modified or adapted to different configura-
tions of the PEM electrolyser. The Bond Graph model proposed in this work
has been developed in the form of capsules using 20-Sim software, which has
been designed and maintained by Controllab of the University of Twente of
the Netherlands [15]. This software allows the user to exploit the full potential
of the Bond Graph tool, as the system equations and fault indicators are au-
tomatically generated, which makes the developed model easily adaptable for
different configurations of the PEM electrolyser. Another innovative interest
of the proposed approach is that the power loss indicators can also be used
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for degradation estimation, and complex degradation models can be avoided for
remaining useful life estimation, compared to those models conventionally devel-
oped in the literature consulted. The effectiveness of the proposed approach has
been demonstrated through various simulations validated in a real electrolyser.

The article is further segregated into four parts. Section 2 provides a brief
introduction to the coupled Bond Graph theory for online efficiency/ power loss
tracking of multiphysics systems. Section 3 is dedicated to the discussion of
the Bond Graph model of the PEM electrolysis cell. Section 4 presents the
simulations and the discussion of the effectiveness of the proposed approach.
Section 5 portrays the conclusion and future perspectives of the proposed work.

2. Coupled Bond Graph approach for efficiency tracking

A coupled Bond Graph is well suited for the modelling of multiphysics phe-
nomena using a handful of elements representing the elementary physical prop-
erty or energy interaction within the system. The coupled Bond Graph approach
has been presented briefly in the following subsection and can be found in detail
in different books and articles [16, 17, 18].

2.1. Coupled Bond Graphs

Bond Graphs are the graphical representation of the energy flow in a system
in the form of various elements (fundamental building blocks) that represent
the basic physical property of the system, such as energy storage, energy dis-
sipation and energy transformation and the interaction of these elements with
each other to constitute the behaviour of the system. Bond graphs are versatile
tools for modelling and analysing systems across different physical domains by
representing energy flow using effort and flow variables. They unify the rep-
resentation of different physical domains by defining domain-specific effort and
flow variables while maintaining consistency in how the energy is exchanged.
The generalised Bond Graph elements can be used for all physical domains.
These elements include C: compliance element (potential energy storage), I:
inertial element (kinetic energy storage), Sf: source of flow, Se: source of ef-
fort, R: resistive element (energy dissipation), energy transformation elements
(TF: transformer and GY: gyrator) to transfer or transform energy between
physical domains, virtual detectors (D f: flow detector and De effort detector)
to detect flow or effort in the Bond Graph. The sources of effort and flow can
be constant or can be modulated and are represented using M Se and MS'f,
respectively. These elements and their significance in different physical domains
have been summarised in the table 1 [19, 20, 21]. These elements are con-
nected through multi-port elements called junctions (j: 0- flow sum junction,
also known as equal effort junction and 1- effort sum junction, also known as
equal flow junction) that represent the law of conservation of energy.
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Table 1. Bond Graph elements for various physical domains

Domain Energy Storage | Dissipation (R) Power Sources | Energy Conver-
(C, I) (Se, Sf) sion (TF, GY)
Electrical | Capacitance (C): | Resistance (R): | Se: Voltage source | TF: Transformer
g=C-V V=R-I (V) (fixed effort-flow ra-
(Charge, Voltage) Sf:  Current source | tio)
Inductance (I): ¢ = (I GY: Gyrator (cross-
L-I domain coupling)
(Flux, Current)
Thermal Thermal Ca- | Thermal Resis- | Se: Fixed tempera- | TF: Heat exchanger
pacitance (C): | tance (R): Q = % ture (T") GY: Thermal-
Q=Cr-T Sf: Fixed heat flow | mechanical coupling
(Heat content, Tem- Q) (e.g., Peltier effect)
perature)
Chemical | Chemical Capaci- | Chemical Resis- | Se: Fixed chemical | TF: Transforma-
tance (C): N =C.- | tance (R): Repre- | potential (u) tion from reactants
m sents the quantity | Sf: Fixed molar flow | to  product  with
( Moles, Chemical po- | of — matter  trans- | (N) modulus equal to
tential) ported by diffusion Stoichiometric coeffi-
of species, and also cients.
determines the speed GY: Electrochemical
of reaction. Zero coupling
(an explosion) until (e.g., batteries)
infinite (no
Fluidic Fluid Capacitance | Fluid Resistance | Se: Fixed pressure | TF: Hydraulic cylin-
(Cy): V=Cp-P (R): AP =Ry -1 (P) der
(Volume, Pressure,) (e.g., pipe friction) Sf: Fixed mass flow | GY: Fluid-
Fluid Inertance rate (1h) mechanical coupling
(I): ®=Lys-m (e.g., turbines)
(Mass  flow rate,
Momentum)

The elements and junctions are connected through half arrows known as
power bonds and represent the power exchange as shown in Figure 1(a). The
half arrow represents the direction of the power flow. Each power bond has
two associated power variables called effort and flow represented by e and f,
respectively, as shown in the figure 1(a) and the product of which represents
the instantenous power flow through that bond and depending on the values of
effort and flow (being negative or positive) determines the direction of actual
power flow. It is worth mentioning that the product of effort and flow has no
physical meaning and does not represent power for some physical domains. For
example, the product of chemical affinity (effort) and reaction flow rate(flow) for
the chemical domain, the product of pressure (effort) and mass flow rate(flow)
for the fluidic domain, etc., does not represent physical power. Table 2 shows
different domains’ effort and flow variables.

In Figure 1(a), the red vertical stroke on the power bond represents causality,
which is a fundamental concept in bond graph modelling. Causality defines the
direction of information flow between elements and determines how the two
power variables are related. In any power interaction, one of these variables is
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Figure 1. Power bond in Bond Graph modelling:(a) Representation and (b) Interpretation.

treated as the independent variable (the ”cause”), while the other is computed
as the dependent variable (the "effect”) as shown in Figure 1(b). The red stroke
is placed at the end of the bond where the effort is supplied or known, and it
indicates that effort flows into that element from the connected component.
This means the element with the stroke is receiving effort information and will
respond by computing or generating the corresponding flow variable.

Causality plays a crucial role in the formulation and simulation of dynamic
models using bond graphs. By assigning causal strokes consistently across the
entire graph, it becomes possible to determine the order in which equations
should be solved and how subsystems interact. For example, in storage elements
such as inertias (I-elements) and capacitors (C-elements), the correct assignment
of causality is necessary to properly capture the energy storage and dynamic
behaviour of the system. Improper causality assignments can lead to modelling
errors or algebraic loops in simulation. Modern software like 20-Sim can assign
the causality automatically. For the storage elements, two types of causality
are possible, namely integral causality and derivative causality, and both types
of causality serve different purposes for the implementation of the Bond Graph
model. Figure 2 shows the inertial storage element in (a) integral causality and
(b) derivative causality.

@%@ ) o1 [ead s
o (@)

D@ = 1% |-
(b)

Figure 2. Bond Graph representation of inertial element in (a) integral causality and (b)
differential causality.

In the integral causality configuration, as shown in Figure 2(a), the causality
stroke is towards the I element. Thus, the I element receives the effort informa-
tion from the junction and returns the flow information to the junction. Here,
the effort and flow are the cause and the effect, respectively, and the flow is the
integral of the effort over time. Integral causality is preferred for the energy
storage element (I and C elements) when the initial values of the states can be
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defined. This is helpful when the Bond Graph model is used for the performance
simulation based on the specified initial conditions. Figure 2(b) represents the
derivative causality as the effect (effort in the case of I element) is the time
derivative of the cause (flow in the case of I element). Derivative causality
for storage elements is particularly helpful in the case of Bond Graph-based
diagnosis.

Table 2. Bond Graph power variables for different physical domains[4, 5, 22].

Physical domain | Effort variable (units) Flow variable (units)
Electrical domain | Voltage (V) Current (A)

Entropy flow rate(J.K*.s!)
Heat flow rate (J.s™)

Thermal domain Temperature (K)

Chemical potential (J.mol™) | Molar flow rate (mol.s™)
Chemical domain L L
Chemical affinity (J.mol™") Reaction flow rate (mol.s™)

Volume flow rate (m®.s7!)

Fluidic domain Pressure (Pa) |
Mass flow rate (kg.s™)

The conventional bond graph approach primarily focuses on representing
power exchange between individual components and subsystems through power
bonds that signify instantaneous power flow (product of effort and flow vari-
ables). While effective for simpler systems that do not have multiple domains
interactions, it can become cumbersome for complex multiphysics systems where
strong interdependencies exist between different energy domains (e.g., electri-
cal, thermal, fluidic etc.). Coupled Bond Graph extends the capabilities of the
regular Bond Graph approach to address the complexity of multiple physical do-
mains’ interaction and entanglement using the modified elements such as those
been presented in figure 3, making it a robust tool for analysing complex sys-
tems, such as in the case of PEM electrolysers. For example, the modified form
of the resistive element, represented by RS as shown in 3(a), is used to model
the irreversible transformation of electric energy into heat, such as in the case
of electrical resistance taking into account the production of entropy [23]. The
coupling between thermal and fluidic domains is represented using a multiport
resistance element (R¢) as shown in Figure 3(b) [5, 6]. Some authors have
also represented it with the coupling element for thermo-fluidic (CETF) [24]
that comprises a modulated source of flow representing the enthalpy flow rate
as shown in figure 3(c). The compliance element of a thermofluidic system is
also coupled as the thermal capacity of such a system is directly linked to the
amount of fluid in the system, thus entangled with the fluidic capacity of the
system and can be represented using a lumped parameter [5, 6].

Bond graph modelling follows a systematic, structured approach with four
different levels of abstraction, progressively refining the system representation
for analysis and simulation [17]. The first level is the physical system level at
which the physical system is identified, consisting of various energy domains such
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Figure 3. Coupled Bond Graph elements for coupling of phenomenon

as mechanical, electrical, fluidic, thermal, chemical or mixed-domain systems.
The components of the system and their energy interactions are clearly defined.
This stage focuses on understanding how energy flows through the system and
identifying key elements that store, dissipate, or transfer energy. The second
level is the graphical model level, at which the physical system is represented us-
ing a bond graph, a graphical representation of energy flow based on power vari-
ables (effort and flow) using the Bond Graph elements to model energy storage,
dissipation, and conversion. Junctions define energy connections, ensuring the
proper interconnection of elements. Causality is assigned to each bond, specify-
ing whether a variable (effort or flow) is an input or an output, which is essential
for deriving mathematical equations. The third level is the mathematical model
level; the bond graph is systematically converted into a system of equations that
describe the dynamics of the system. Using constitutive relations, the system
is formulated in terms of differential and algebraic equations. The mathemat-
ical model provides a structured and modular representation that facilitates
further analysis, including stability, controllability, and system response eval-
uation. Finally, at the simulation/computation level, the mathematical model
is implemented in computational tools such as MATLAB/Simulink, 20-sim, or
Modelica for numerical simulation. These tools solve the differential equations
using numerical integration methods (e.g., Runge-Kutta) to predict system be-
haviour under various conditions. By following this hierarchical approach, bond
graph modelling ensures a seamless transition from a physical system to an exe-
cutable simulation, making it a powerful tool for complex multi-domain system
analysis and design. For the presented work, 20-sim has been chosen as the
preferred platform for the development and implementation of the bond graph
model of PEM electrolyser. It is a powerful tool for bond graph modelling
due to its native support for multi-domain system simulation, intuitive graph-
ical interface, and automatic equation generation directly from the graphical
model [25]. It seamlessly integrates mechanical, electrical, hydraulic, and ther-
mal systems, making it ideal for complex, multi-physics modelling. 20-sim also
supports the encapsulation of the Bond Graph model of different components
and phenomena in the form of a .emx file (Encapsulated Model Exchange) so
that the modular approach can be used to build complex models while allow-
ing flexibility. The software also supports real-time simulation, optimisation,
and hardware-in-the-loop (HIL) applications, enabling efficient control system

10
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2.2. Bond Graph-based efficiency/ power loss tracking

To calculate efficiency, the input and output of the system or subsystem must
be known with certainty. However, these values may not always be directly
measurable at the subcomponent level, either due to the absence of the re-
quired sensors or the quantity being unmeasurable using sensors. In such cases,
a mathematical model can be employed to estimate power losses, enabling effi-
ciency calculations for various subcomponents or sub-elements. Virtual sensors
can assist in estimating the power variables needed for power loss calculations.
Figure 4 shows the proposed methodology to estimate the power loss using a
Bond Graph approach. The image shows the two power loss estimators that
have been proposed based on the sensor information type and are modelled as
capsules in 20-Sim. This provides the modularity and reusability, thus allowing
the user to exploit these power loss trackers as part of the Bond Graph library
as and when required. These estimators are labelled as Power Loss Tracker Ef-
fort Sensor type (PLTES), shown in Figure 4(a) and Power Loss Tracker Flow
Sensor type (PLTFS), shown in Figure 4(b), for the presented work.

em :@—» Pioss

foe

e » e > Bond Graph

. m ’

Physical Mse I 1 m I Model
System em fe 5 (Derivative

Causality)

Bond Graph
Physical “I_ - Model
System _ (Derivative

Causality)

Figure 4. Power loss estimation capsules for Bond Graph Model, (a) PLTES and (b) PLTFS

For power loss estimation, the bond graph in derivative causality is pre-
ferred as it eliminates the requirement of the initial conditions. The measure-
ments from the system are introduced as inputs to the derivative bond graph
by dualising the system sensors [17]. For PLTES, the input is introduced as the
modulated source of effort, as shown in the figure 4(a). For example, temper-
ature, pressure, etc. measurements (em) are introduced as modulated sources
of effort through 1 junction as shown in Figure 4(a). The power bond joining
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the 1 junction to the derivative bond graph model is called a strong bond, as it
sets the value of effort in all the power bonds connected to the 0 junction in the
derivative bond graph model. As the 0 junction corresponds to the conservation
law, the sum of the power entering and exiting the 0 junction must be equal to
zero. In other terms, the sum of all the flows at this zero junction must be zero,

ie.,
ZPizooeri:O (1)
i=1 i=1

where i represents the it” power bond and corresponding flow value, and n rep-
resents the total number of power bonds connected to the 0 junction. Depending
on the direction of the power, its numerical value is considered positive for the
power entering the junction and negative for the power leaving the junction.
This equation is valid for normal operating conditions, while the parametric
and measurement errors are assumed to be negligible or non-existent. In the
case of the non-negligible uncertainties, the LFT bond graph must be used to
calculate the thresholds that bound the non-zero value of the equation 1 [8].
The numerical value of the equation 1 is termed as a residual and is often used
for diagnosis. When a fault occurs in the system to which the particular residual
is sensitive, the value of the residual becomes non-zero or crosses the thresholds
in the case of the LFT bond graph. This change in the residual value can also
be used to track the power loss due to the fault. The change in the residual
value is equal to the flow in the power bond connecting the effort measurement
to the derivative bond graph, represented by f. in Figure 4(a). This flow can
be measured using the flow detector (Dy) at the 1 junction, as shown in the
figure, and the product of this estimated flow with the measurement from the
sensor gives the value of the instantaneous power loss corresponding to the fault
that occurred. Similarly, power loss can be estimated using PLTFS using the
measurements (f,,) of the flow variables such as current, mass flow rate, etc.,
as shown in Figure 4(b).

Figure 5 shows the example of the power loss tracking using the proposed
methodology for a water tank of fluidic capacity C; being filled with a pump at
Q;n flow rate.

A sensor measures the height h of the water level in the tank, which can be
considered as an effort type sensor as the measurements from the sensor can be
used to calculate the water pressure inside the tank, i.e. p.g.h. The exit valve
can be modelled as a fluidic resistance Ry whose value is inf when the valve is
closed and 0 when the valve is fully open. The fault in the position of the valve
can lead to the loss of water, which corresponds to the loss of fluidic power. This
power loss can be tracked using PLTES as shown in Figure 5. The height sensor
is dualised and used as the modulated source of effort to provide tank pressure
as input to the diagnostic bond graph of the system. From the diagnostic bond
graph model, the flow (leakage due to fault in valve) is estimated from the
conservation law at the 0 junction, which is given by the equation 2

d em_Pou
fo=Crop + 2 —Q, (2)

Ry
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Figure 5. Power loss estimation using proposed methodology

The product of the estimated flow and the effort measured from the sensor
gives the power loss. This power loss tracking also corresponds to the loss in
the efficiency of the system and can be used to monitor the performance and
health of the system. This also gives scope to utilise the power loss tracking for
estimating the remaining useful life of the system if the evolution of the power
loss can be predicted, it can be exploited for the estimation of remaining useful
life. In the absence of the actual measurements, the performance model of the
system can be used with virtual sensors to provide the measurements. This
approach has been implemented in this article. As it is difficult and dangerous
to introduce faults in the actual system, the performance model provides the
perfect opportunity to test the proposed methodology, as various faults can be
introduced in the performance model at any instant and with different evolution
conditions.

3. Coupled Bond Graph Model of PEM electrolyser cell

PEM electrolysis cell is a complex multiphysics system due to the entangle-
ment of different physical domains as depicted in Figure 6.

Due to this complexity, the coupled bond graph approach is well-suited to
develop the model of the PEM electrolysis cell/ stack. The model consists of
various submodels/capsules representing different physical phenomena coupled
together, such as electrothermal, electrochemical and thermofluidic phenomena
that interact with each other to provide the holistic model. The interactions
between these submodels are shown in Figure 7, also showing the inputs and
outputs for different submodels.

The expanded bond graph model (in derivative causality) for the PEM elec-
trolysis cell is shown in Figure 8. Different phenomena-based submodels have
been highlighted, and the interaction between these submodels can be seen near
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Figure 7. Phenomena-based submodels of PEM electrolysis cell and their interactions.

the boundaries of these submodels. Different coloured bonds are used in the fig-
ure to represent power bonds of different energy domains: yellow for electrical,
red for thermal, blue for fluidic, and green for chemical. The presented model
is the improved version of the Bond Graph model developed and presented by
the authors in previous work [6, 8]. The model has been modified for the im-
plementation in 20-sim, and these modifications have been highlighted in the
subsequent paragraphs.

The electro-thermal submodel, in Figure 8, is responsible for the estimation
of the electrical power losses due to ohmic resistance of the Membrane Electrode
Assembly (MEA), activation overpotentials and concentration polarisation due
to the concentration gradient of different species. These power losses have been
modelled as the multiport resistance elements, and the electrical losses due
to these resistances contribute to the irreversible heat flow that increases the
temperature of the cell. The dual-layer capacitance of the cell is modelled as
a compliance element (Cg;), which is responsible for the accumulation of the
charge during the transient behaviour of the cell. The dual-layer capacitance is
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w3 given as [26]

A
Cq = Edd (3)

where € is electrolyte permittivity, A is electrode’s surface area and dg is
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Figure 8. Bond graph model of PEM electrolysis cell in derivative causality for power loss
tracking.

394

ss  thickness of the dual layer. The cell voltage can be calculated from the junction
6 equation as

Ecell = thmic + Eact,ano + Eact,cat + Erev + Econ (4)

s7  The equations representing the non linear resistances in the eletro-thermal sub-
33 model have been discussed in details in [6, 8]. Substituting the values of voltages
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in right hand side based on the equations from [6, 8], the cell voltage can be
written as

.T, s — 1 .T S — I
Eceti = Ronmic-dcell + R F?e”Slnh 1 (72 CIe” ) + BeTeen F?e”Slnh 1 (72 cell )

10,a ~IO,c
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aHQ() Iﬂ.m

()

The electrochemical sub-model is responsible for calculating the production
of hydrogen, oxygen and water consumption. It also calculates the energy (Gibbs
free energy) required for the dissolution of water into the gases, which enables
the calculation of reversible voltage. The rate of production of the hydrogen is
calculated using the equation [6]

. . Ice
mmy, :VHQ.MH2.€:VH2.MH2.21? (6)

The fluidic submodel is based on the conservation of mass flow to estimate
the pressure on the anode and the cathode side because of the flow of water
and produced gases. The model takes into account the effect of electro-osmosis
drag and diffusion of gases from one side to another, and the water from the
anode to the cathode side. These flows have been modelled as the modulated
sources of flow to simplify the model to be implemented in 20-sim. The diffu-
sion is modelled as a multiport resistance element. In the thermal sub-model,
the lumped parameter approach has been followed to model the thermal re-
sistance and thermal capacity of the PEM electrolysis cell. These parameters
are responsible for the evolution of the temperature of the electrolysis cell over
time. Using a lumped thermal capacity for a PEM electrolysis cell simplifies the
thermal modelling process by assuming that the entire cell maintains a uniform
temperature throughout. The choice of the lumped parametric approach can
also be justified through the fact that the similar assumption is also made in
experimental study of the PEM electrolysis cell as there are no temperature sen-
sors inside the PEM electrolysis cell and the cell is assumed to have a uniform
temperature throughout which is taken equal to the temperature of the water
exiting the anode side. This also makes the proposed model computationally
efficient and is sufficient for high-level system analysis by neglecting the spatial
temperature gradients and local thermal phenomena. Of course, this assump-
tion also has its limitations when significant localised internal heat generation
occurs, or if the cell has very large dimensions or low thermal conductivity, mak-
ing it unlikely for heat to distribute uniformly, however for the current study,
this assumption is justified.

The thermal model is coupled with the fluidic model using multiport R,
elements to take into account the enthalpy flows because of the movement of
water and produced gases.The equation for the evolution of the temperature of
the cell is calculated from the energy conservation equation at the zero junction
and is written as [6]

Teet = i / (M + oy + Qur + Qs+ Qi — Hgit — HEt! = Qi )l
cell
(7)
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The previous publications by the authors can be referred to undertsand the
process of generation of these equations [6, 8]. However, for the presented work
the governing equations for the model are generated automatically in the 20-sim
software through the exploitation of the causal properties of the bond graph [19].
These generated equations for the model have been included in the appendix.

A sensitivity study has been performed using the Sensitivity Analysis op-
tion of the Time Domain Toolbox of 20-Sim software[15]. This built-in feature
allows the user to analyse the effect of the variation in the parameters on the
output. In presented work, the effect of the variation of the various parameters
on the power loss trackers has been analysed. The dependency of the power
loss estimation on these parameters is analysed through the sensitivity value for
each parameter and is defined as the percent change in the power loss to the
change in the parameter. The variation of £10% in the parameters has been
considered for this analysis. For the sensitivity study, the Integral of Abso-
lute Value (approximated through Euler’s method) metric has been chosen as it
provides a robust, quantitative measure of the overall power loss deviation due
to a parameter change. Six parameters have been considered for the sensitivity
study, namely, thermal resistance of the cell (R th), Current exchange density
of anode side (Iy ), current exchange density of cathode side (o), hydration
of the membrane (qem ), thickness of the membrane (d,er, ), and ohmic resis-
tance of the cell components other than membrane (Ryp,). Tables 3 and 4 show
the sensitivity analysis of the power loss tracker for the electrothermal submodel
and the thermal submodel, respectively. From table 3, it can be seen that the
power loss tracker for electrothermal submodel is highly sensitive to the current
exchange density on the cathode side and least sensitive to the current exchange
density on the anode side. This power loss tracker is also partially sensitive to
the thermal resistance of the cell. Therefore, the effect of thermal degradation
will also contribute to power loss in electrothermal phenomena. From table 4, it
can be concluded that the power loss tracker of the thermal model of the PEM
electrolysis cell is highly sensitive to thermal resistance and least sensitive to the
ohmic resistance of the cell. A change in the hydration level of the membrane
will also contribute partially towards the power loss in the thermal domain.

Table 3. Sensitivity analysis for power loss tracker in electrothermal submodel

X = Parameter | Nominal Value x | dx(%) | dy dy (%) dy/dx
Sensitivity (%)

R, 0.5 1 -2.92E-05 |-0.1317 -13.176

Io.a 7.43E-08 1 -9.372E-12 | -4.23E-08 -4.230E-06

Ioc 0.005754 1 0.0002639 | 1.19135 119.135

Cmem 15 1 2.103E-06 | 0.009492 0.949

Amem 0.0046 1 -2.881E-06 |-0.013005 -1.300

Rotn 0.05 1 -3.514E-11 | -1.5859E-07 | -1.585E-05
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Table 4. Sensitivity analysis for power loss tracker in thermal submodel

X = Parameter | Nominal Value x | dx(%) | dy dy (%) dy/dx
Sensitivity (%)

Rth, 0.5 1 833.848 | 1.1066 110.66

Ip.q 7.43E-08 1 -9.1379E-12 | -1.1441E-08 | -1.1441E-06

Iy, 0.005754 1 0.0002639 | 3.2976E-07 | 3.2976E-05
mem 15 1 3.6215E-06 | 4.5341E-09 | 4.5341E-07
dimem 0.0046 1 -4.595E-06 | -5.753E-09 |-5.753E-07

Rotn 0.05 1 -3.513E-11 | -4.398E-14 | -4.398E-12

The proposed methodology has been implemented for the hybrid multi-
source platform available at the University of Lille, shown in Figure 9 For the

Figure 9. Hybrid multi-source platform with PEM electrolyser at the University of Lille.

presented study, the application is focused on the key component of the PEM
electrolyser, i.e. PEM electrolysis cell. Based on the availability of the measure-
ment sensors in the physical system, the power loss trackers can be introduced
to the presented bond graph model in Figure 8. The current sensor measure-
ment is introduced to the bond graph model for the power loss tracking through
PLTFS, as the current corresponds to the flow variable. Similarly, the temper-
ature measurement and the anode and cathode side pressure measurements are
introduced through PLTEs to the bond graph as they are effort variables. In
the absence of the actual measurements, the measurements can be estimated
from the performance bond graph model (integral causality) as shown in the
figure 10. The performance model can also act as the digital twin of the PEM
electrolysis cell, allowing the induction of the faults in the model itself, which is
impossible to induce or emulate in the real process due to practicality issues and
safety concerns. The performance model developed and demonstrated by the
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authors for a single cell PEM electrolyser in [6] has been used for the simulations
showing the proposed approach, presented in the following section.
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electrolysis cell

Performance model of PEM
electrolysis cell

Figure 10. Implementation of the proposed approach for power loss tracking.

4. Simulations and Discussion

To demonstrate the effectiveness of the proposed methodology, the PEM
electrolysis cell is considered to be operated at a constant voltage of 4.5V for
400 hours. The degradation is introduced directly into the performance model
by changing the parameters. For this, two cases have been presented. In the
first case, the degradation of the MEA has been considered to start appearing
at the 50th hour of the simulation, as shown in Figure 11(a). This degrada-
tion is assumed to evolve gradually and linearly over time because of the ageing
of the electrolyser cell, and it directly affects the ohmic resistance of the cell
[27].1t has been reported by the researchers that the ohmic resistance increases
approximately linearly during the decay phase due to membrane component
degradation [28, 29]. This is evident that with an increase in the ohmic resis-
tance, the ohmic power loss increases. The same can be seen in figure 11(b),
which represents the ohmic power loss due to the MEA degradation (the negative
value of the power represents power loss). This power loss is directly estimated
by the PLTFS placed at the 1 junction of the electro-thermal submodel. The
increase in the ohmic resistance directly affects hydrogen production. With the
increase in ohmic resistance, as the current decreases, the hydrogen production
decreases as seen in figure 11(c). The evolution of the temperature of the cell
is shown in Figure 11(d). With the increase in ohmic resistance at constant
voltage, the temperature of the cell decreases due to the decrease in current.

In the second case, the thermal resistance of the cell is considered to be
increasing with time. This can happen for many reasons, such as failure or
degradation of the ventilation system or the heat exchange system. Under ag-
gressive testing protocols (e.g. temperature or load cycling), interface and ma-
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terial degradation accelerate rapidly, yielding an exponential growth in thermal
resistance [30]. Thus, the thermal resistance of the cell is assumed to increase
exponentially as shown in Figure 12(a). This increases the temperature of the
cell as its heat dissipation capacity reduces, as shown in Figure 12(d). It is
worth mentioning that the power loss in the case of the thermal domain is not
the product of the measured effort and estimated flow, but is directly equal to
the flow because the flow in this case is the heat flow rate and is equivalent to
thermal power.
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Figure 11. Simulation results for case 1: (a)Evolution of ohmic resistance, (b) Power loss
estimation, (c¢) Hydrogen production and (d) Cell temperature evolution;
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Figure 12. Simulation results for case 2: (a)Evolution of ohmic resistance, (b) Power loss
estimation, (c¢) Hydrogen production and (d) Cell temperature evolution.

In case of the increase in thermal resistance, the power loss is shown in Figure
12(b), which is tracked by the PLTES placed at the zero junction of the thermal
model. It can be seen that the value of the power loss is positive. This means
that instead of power loss, the power gain has occurred, which is justified as
with the increase in thermal resistance, the heat flow towards the surroundings
has decreased. Figure 12(c) shows the hydrogen production for this case. The
hydrogen production increases with an increase in thermal resistance as with an
increase in temperature, the energy required to dissociate the water molecules
also decreases.

5. Conclusion

Coupled Bond Graph-based power loss tracking has been presented for the
PEM electrolysis cell. Two generalised power loss trackers, PLTES and PLTFS,
have been introduced that can be modelled as capsules for power loss track-
ing using derivative bond graph models, with the application presented for the
PEM electrolysis cell. A sensitivity analysis of the power trackers compared to
the model parameters has also been presented. The simulation for power loss
tracking in a laboratory-size single PEM electrolyser cell has been presented,
where the effect of degradation can be seen on hydrogen production. The power
loss in the case of an increase in ohmic resistance and power gain in the case
of an increase in thermal resistance were successfully tracked. This approach
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provides a valuable tool for assessing the performance of the PEM electrolysis
cell. Due to generic nature of the modelling and generalization of the power
loss trackers for Bond Graph, the proposed methodology can be used for PEM
electrolysis stacks of laboratory and industrial size. In future work, the pro-
posed approach can also be applied to the balance of plant of the electrolyser
such as hydrogen and oxygen separators and recirculation circuits to analyse
the long-term performance of the complete electrolysis system. This approach
also lays the foundation for using power loss tracking for the estimation of the
remaining useful life of the electrolyser by estimating the power losses over time.
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