

Enhancing Electrolyzer Durability Through a Multiscale Strategy: The ELECTROLIFE Approach

Webinar: Advancing Online Diagnostics and Building Durable Electrolysis Systems for Europe's Hydrogen Future

Alessandro Monteverde
Politecnico di Torino

Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the Clean Hydrogen Partnership. Neither the European Union nor the granting authority can be held responsible for them.

Outline

- **About ELECTROLIFE**
- **Objectives and Concept**
- **Partners**
- **Approach**
- **Results**

Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the Clean Hydrogen Partnership. Neither the European Union nor the granting authority can be held responsible for them.

ELECTROLIFE

- **Electrolife: Enhance knowledge on comprehensive electrolyser technology degradation through modelling, testing, and lifetime prediction, toward industrial implementation.**
- ELECTROLIFE aims to advance the understanding of electrolyzer degradation mechanisms and improve cell performance to boost efficiency, reduce critical material use, and extend system lifetime.
- How?
 - Through a combination of experimental testing, multiphysics modelling, and prototyping, the project supports the industrial implementation of durable, scalable, and recyclable green hydrogen technologies.
 - Ultimately, ELECTROLIFE seeks to accelerate the decarbonization of European industry by overcoming current limitations in electrolysis technologies.

Enhance durability of electrolyser technologies

Acronym: ELECTROLIFE

Duration: 60 months

Start date: 01 January 2024

End date: 31 December 2028

Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the Clean Hydrogen Partnership. Neither the European Union nor the granting authority can be held responsible for them.

Co-funded by
the European Union

Approach

The ELECTROLIFE concept and architecture is unique because focus its research activities on all **the 5 today classified electrolysis technologies**, in order to approach with the same structured methodology all the paths to understanding and modeling the degradation mechanisms of different electrochemical systems, to develop and assess improved electrochemical cells and stacks (especially under dynamic use and operational stress) and to validate technologies and diagnostic tools (SoH).

Keystones

The ELECTROLIFE concept consist of 8 keystones (KS):

- KS1: Identification and comprehension of degradation phenomena that affect the 5 (AEL, AEMEL, PEMEL, SOEL, and PCCEL) technologies involved
- KS2: Development of degradation and lifetime prediction models
- KS3: Development of testing procedures for degradation assessment
- KS4: Development of ad-hoc testing and diagnostic tools
- KS5: Technologies development and optimization
- KS6: Execution of test campaigns on the 5 electrolysis technologies
- KS7: Validation of the degradation models and diagnostic tools
- KS8: Guidelines for next generation robust stacks, diagnostic tools and optimized strategies of operation, for electrolyzers lifetime extension

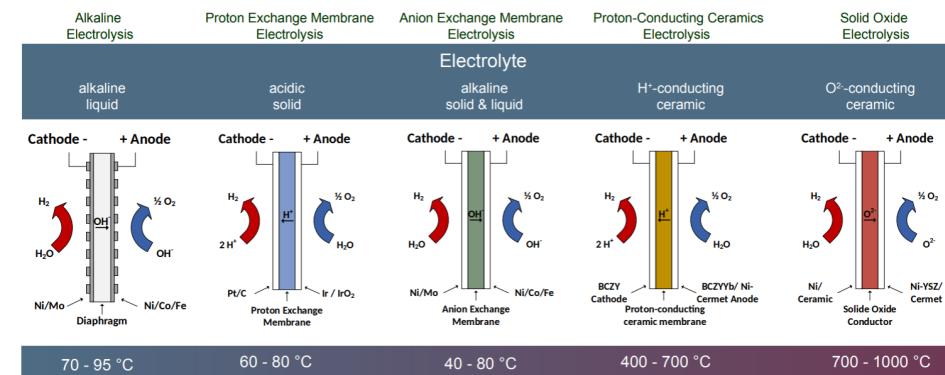


Figure. Overview of the five electrolysis technologies studied in ELECTROLIFE

Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the Clean Hydrogen Partnership. Neither the European Union nor the granting authority can be held responsible for them.

ELECTROLIFE in figures

ELECTROLIFE in figures

40% progress

of the total project.

ELECTROLIFE started at January 2024
and will run for 60 months.

9.995.705,00 €

funding from the European Commission
in Horizon Europe program.

17 partners

from 9 different countries.

<https://electrolife-project.eu/>
<https://cordis.europa.eu/project/id/101137802>

Duration: 60 months
Start date: 01 January 2024
End date: 31 December 2028
Total budget: €9.995.705,00

Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the Clean Hydrogen Partnership. Neither the European Union nor the granting authority can be held responsible for them.

ELECTROLIFE Partners

Enhance durability of electrolyser technologies

Politecnico
di Torino

UNIRESEARCH

enel
Green Power

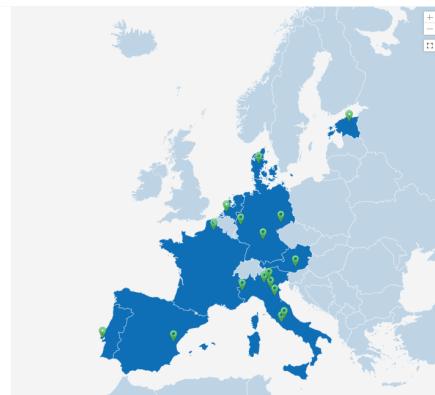
FAU
Friedrich-Alexander-Universität
Technische Fakultät

TU
Graz

AAU
ENERGY
AALBORG
UNIVERSITY

JÜLICH
Forschungszentrum

Université
de Lille


stargate
hydrogen

Pietro
Fiorentini

ISI Energy Portugal Unipessoal Lda
Aalborg University
Consiglio Nazionale Delle Ricerche
Enel Green Power SpA
Forschungszentrum Jülich gmbh
Friedrich-Alexander-Universität
Erlangen-Nürnberg
Graz University of Technology
Hyter s.r.l.
Kerionics S.r.l.
Loccioni
Pietro Fiorentini SPA
Polite Di Torino
SolydEra SPA
Stargate Hydrogen Solutions OU
Uniresearch
University of Lille
Volytica Diagnostics gmbh

Consiglio Nazionale
delle Ricerche

1s1 Energy

LOCCIONI

volytica diagnostics


SolydEra

Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the Clean Hydrogen Partnership. Neither the European Union nor the granting authority can be held responsible for them.

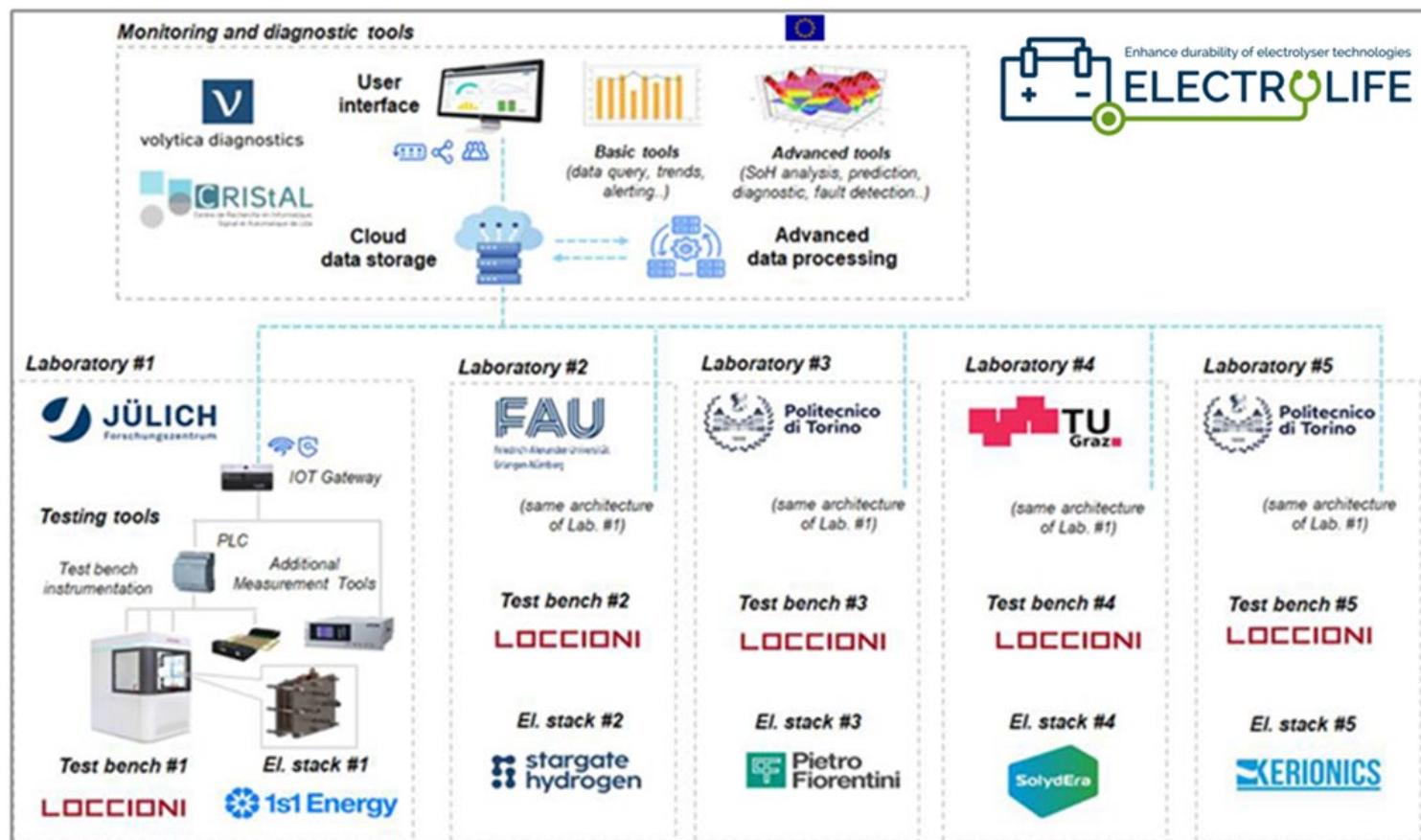
General assemblies and partners

Third General Assembly (#GA03) of ELECTROLIFE in Erlangen, Germany

Second General Assembly (#GA02) of ELECTROLIFE in Ancona, Italy

Four General Assembly (#GA04) of ELECTROLIFE in Tallin, Estonia

Kick-off meeting (#GA01) of ELECTROLIFE in Torino, Italy


Typical meetings: big crowd, bigger ideas

Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the Clean Hydrogen Partnership. Neither the European Union nor the granting authority can be held responsible for them.

Overall Approach and Key Activities

Key Activities

Testing of all Electrolyzer Types

- Testing of AEL, AEMEL, PEMEL, SOEL, and PCCEL at the stack level (**TRL 5**).

Durability Testing:

- Conducting durability tests for 10,000 hours.
- Applying RES profiles to assess durability.

Degradation Modeling:

- Developing and validating degradation models at both single-cell and stack levels.

Economic Evaluation:

- Evaluating the Levelized Cost of Hydrogen (LCOH) for specific scenarios.

Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the Clean Hydrogen Partnership. Neither the European Union nor the granting authority can be held responsible for them.

Results: Degradation factors, degradation mechanisms and degradation effects

HORIZON EUROPE PROGRAMME
TOPIC HORIZON-JTI-CLEANH2-2023-1
GA No. 101137802

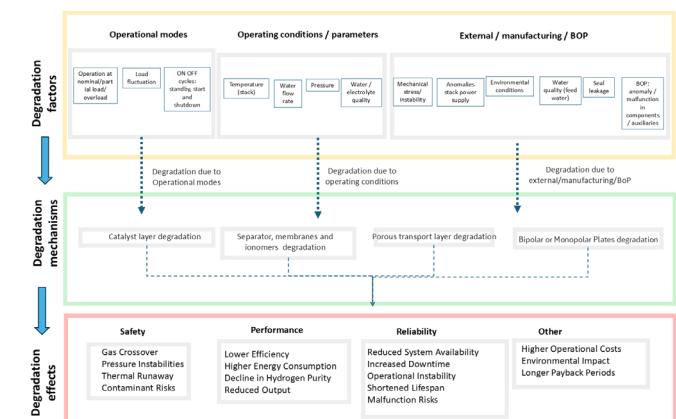
ELECTROLIFE

Enhance knowledge on comprehensive electrolyser technologies degradation through modeling, testing and lifetime prevision, toward industrial implementation

Deliverable report

D2.1 – Degradation phenomena compendium

GA No. 101137802		
Summary		
1	Introduction, main goals, how to use this document and terminology.....	10
1.1	Introduction	10
1.2	Electrolysis Technologies Overview	10
1.3	Structure and Accessibility of the Document	11
1.4	Terminology	12
2	Degradation mechanisms.....	15
2.1	Degradation mechanism related to catalyst instability.....	15
2.2	Degradation mechanisms related to the instability of the separator, membranes and ionomers	36
2.3	Degradation mechanisms related to the instability of the porous transport layer	51
2.4	Degradation mechanisms related to the instability of the bipolar or monopolar plates	57
2.5	Degradation mechanisms related to the instability of components due to contaminants.	64
2.6	Degradation mechanisms related to electrolyte variables: including composition, concentration and flow configuration.....	71
2.7	Summary of all technologies.....	75
3	Relation between Operational Modes and Degradation.....	76
3.1	Load Fluctuation	79
3.2	Partial Load	85
3.3	On/Off cycles.....	86
3.4	Synergistic Effects	87
3.5	Temperature	89
3.6	Pressure	91
3.7	Water Flow rate and quality	94
3.8	Anomalies stack power supply	94
3.9	Environmental conditions, Mechanical stress, seal leakage; BOP.....	95
3.10	Stressors (summarized degradation factor on performance....).....	97
3.11	Impact of Degradation factors on Performance and Reliability	99
4	Industrial and partners experience of this topic	101
5	EU funded project analysis	105
6	Characterization techniques	112
7	Exploring Interconnections between Technologies	116
8	Conclusions	118



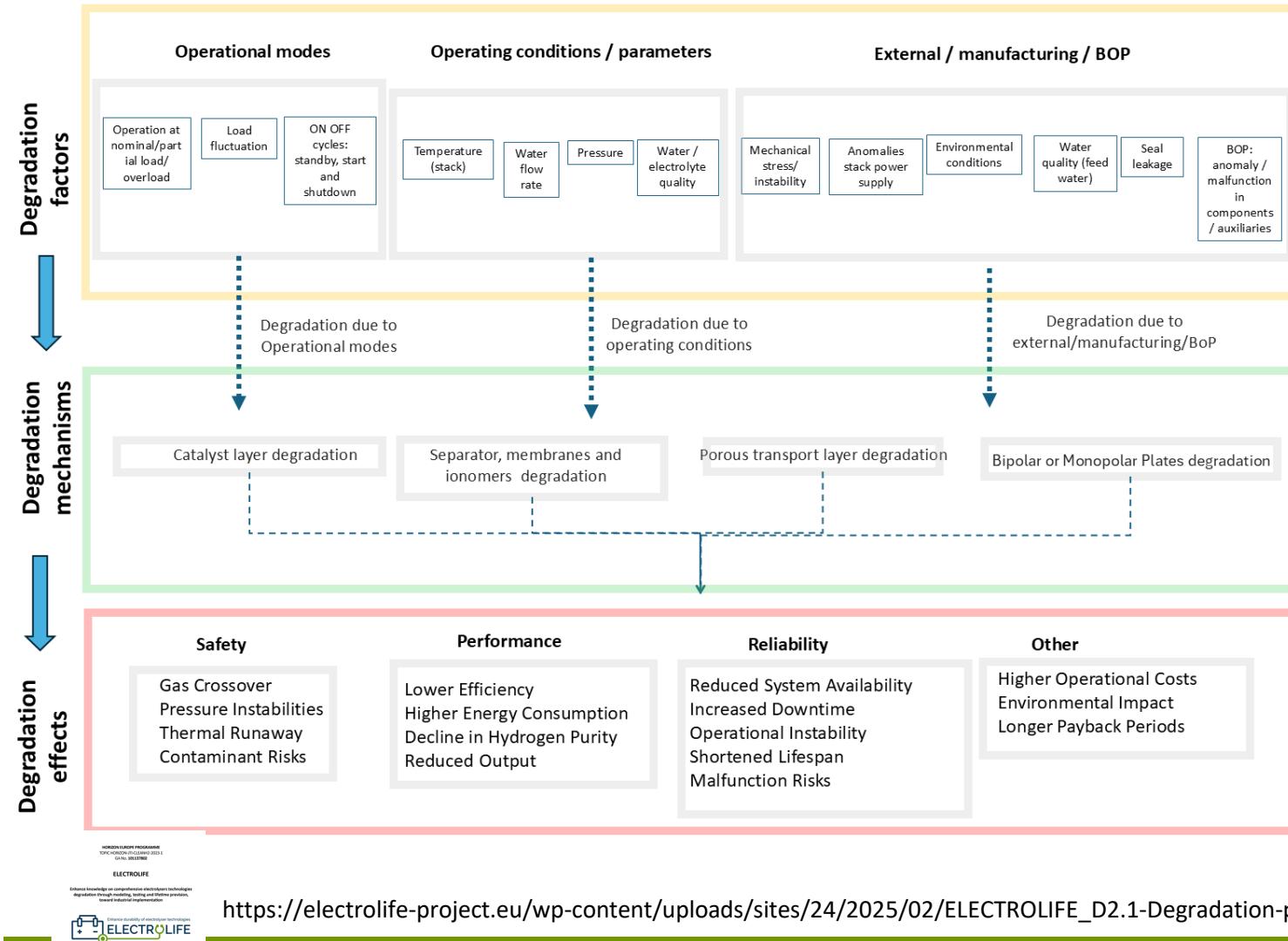
Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the Clean Hydrogen Partnership. Neither the European Union nor the granting authority can be held responsible for them.

D2.1 – < Degradation phenomena compendium > (PU)

4 / 154

See next slide

https://electrolife-project.eu/wp-content/uploads/sites/24/2025/02/ELECTROLIFE_D2.1-Degradation-phenomena-compendium_PUB_final.pdf



Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the Clean Hydrogen Partnership. Neither the European Union nor the granting authority can be held responsible for them.

Co-funded by
the European Union

Results: Degradation factors, degradation mechanisms and degradation effects

Electrolyser operational modes and various degradation factors (e.g., operating conditions, manufacturing, BoP) trigger specific degradation mechanisms—chemical or physical—based on their frequency and intensity. These mechanisms lead to performance loss, safety issues, and reduced reliability.

Figure illustrates the degradation process in three layers:

Top (yellow): Main degradation factors, including operational, environmental, and manufacturing-related stressors.

Middle (green): Resulting degradation mechanisms affecting key components (e.g., membranes, catalysts, BPPs).

Bottom (red): Effects on system-level performance, safety, and economic viability.

The figure highlights how factors lead to mechanisms, which in turn cause measurable degradation effects.

https://electrolife-project.eu/wp-content/uploads/sites/24/2025/02/ELECTROLIFE_D2.1-Degradation-phenomena-compendium_PUB_final.pdf

Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the Clean Hydrogen Partnership. Neither the European Union nor the granting authority can be held responsible for them.

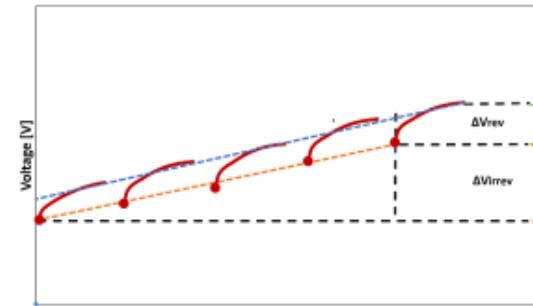
Results: Harmonised protocols for LTEL

GA No. 101137802

Content

1	Introduction.....	8
2	Methods and core part of the report.....	10
2.1	Background.....	10
2.1.1	Studying Degradation in PEMEL, AEMEL, and AEL Electrolyzers Under Steady State Conditions.....	10
2.1.2	Studying Degradation in PEMEL, AEMEL, and AEL Electrolyzers Under Dynamic Operating Conditions.....	11
2.2	Protocols.....	11
2.3	Data Analysis	12
2.3.1	Main electrochemical parameters.....	12
2.3.1.1	Tafel equation.....	12
2.3.1.2	Electrochemical Impedance Spectroscopy.....	14
2.3.1.3	Determination of the degradation rate.....	16
2.3.1.4	Calculation of efficiency	18
3	Results & Discussion.....	20
3.1	Single-cell and stack protocols	20
3.1.1	MEA performance evaluation.....	21
3.1.2	Polarization curve test procedure	22
3.1.3	Durability test under steady state condition.....	26
3.1.4	Durability test under dynamic profile	28
3.1.4.1	RW-derived profile for Power to Gas Application and Grid balance application.....	31
3.1.4.2	Wind and PV derived profiles for the Assessment of Degradation Phenomena under Dynamic Conditions.....	32
3.1.5	Accelerated Testing protocols and procedures.....	35
3.1.5.1	Dynamic Load profiles	37
3.1.5.2	High current and High voltage fluctuating profiles	38
3.1.5.3	Start-up / shut down profiles	40
3.1.5.4	Pressure Cycling test profiles	41
3.1.5.5	temperature Cycling test profiles	43
3.2	Contribution to project (linked) Objectives.....	44
3.3	Contribution to major project exploitable result	45
4	Conclusion and Recommendation	46
5	Risks and interconnections.....	47

3 / 50


Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the Clean Hydrogen Partnership. Neither the European Union nor the granting authority can be held responsible for them.

Enhance durability of electrolyser technologies

ELECTROLIFE

JRC's voltage degradation calculation method

Proposed approach for calculation of voltage degradation

<https://electrolife-project.eu/deliverable-4-1/>

Results: Specifications of the testing tools

Test bench Provider	LOCCIONI	LOCCIONI	LOCCIONI	LOCCIONI	LOCCIONI
Laboratory	JÜLICH Forschungszentrum	FAU Fachhochschule Universität Regensburg	Politecnico di Torino	TU Graz	Politecnico di Torino
Stack manufacturer	1st Energy	stargate hydrogen	Pietro Fiorentini	SolydEra	Kerionics

Figure 1. ELECTROLIFE partners directly involved in stack testing

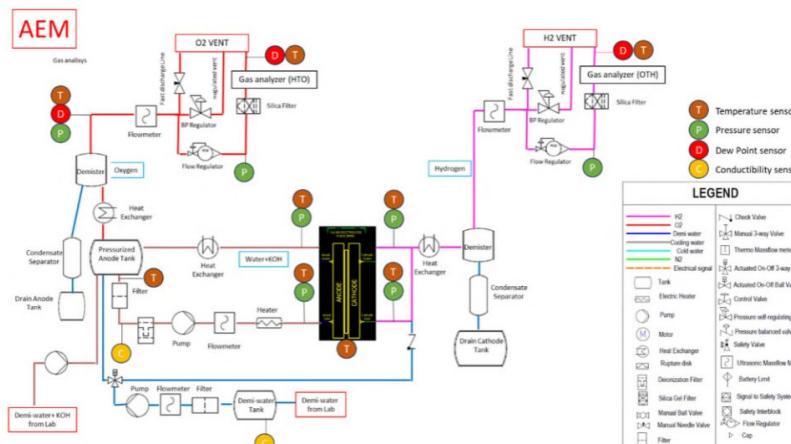


Figure 10: Process Flow Diagram of AEMEL test bench

Detail engineering of stacks and test bench:

Specifications and requirements of the stacks to be tested were discussed between three actors (Test bench Provider, Laboratories and stack manufacturer):

- **Test Bench provider (Loccioni)**
- **Stack manufacturers (1s1, Stargate, PF/Hyter, Solydера, Kerionics)**
- **RTOs owners of labs (Polito, FAU, GRAZ, Jülich)**
 - PEMEL, AEL, AEMEL, SOEL and PCCEL
 - Stack specifications, requirements for stack manufacturers; Requirements For Laboratories and Rtos; Specifications of Testing Tools.

Test bench design & construction (*indicative):

- Example of PI&D for AEMEL

[a] EU harmonised protocols for testing of low temperature water electrolysis. <https://op.europa.eu/en/publication-detail/-/publication/bbbeba00-ee82-11eb-a71c-01aa75ed71a1>

Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the Clean Hydrogen Partnership. Neither the European Union nor the granting authority can be held responsible for them.

Results: Test benches manufacturing

Frame of first two test benches (AEM, AEL) assembled

LOCCIONI

*Courtesy image: Loccioni

Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the Clean Hydrogen Partnership. Neither the European Union nor the granting authority can be held responsible for them.

The project is supported by the Clean Hydrogen Partnership and its members.

The project has received funding from Clean Hydrogen Partnership Joint Undertaking under Grant Agreement No 101137802. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.

Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the Clean Hydrogen Partnership. Neither the European Union nor the granting authority can be held responsible for them.

Thanks for the Attention

Politecnico di Torino

DISAT

(Department of Applied Science and Technology)

 Corso Duca Degli Abruzzi 24- 10124 Torino - IT

Alessandro Monteverde

 T +39 011.0904720

 E alessandro.monteverde@polito.it

 <https://www.polito.it/personale?p=alessandro.monteverde@polito.it>

Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the Clean Hydrogen Partnership. Neither the European Union nor the granting authority can be held responsible for them.

